This library includes ultra-fast Rust based query string and urlencoded parsers. These parsers are used
by Litestar
, but are developed separately - and can of course be used separately.
[!IMPORTANT]
Starlite has been renamed to Litestar
</div>
pip install fast-query-parsers
The library exposes two function parse_query_string
and parse_url_encoded_dict
.
parse_query_string
This function is used to parse a query string into a list of key/value tuples.
from fast_query_parsers import parse_query_string
result = parse_query_string(b"value=1&value=2&type=dollar&country=US", "&")
# [("value", "1"), ("value", "2"), ("type", "dollar"), ("country", "US")]
The first argument to this function is a byte string that includes the query string to be parsed, the second argument is the separator used.
Query string parsing is more than x5 times faster than the standard library:
stdlib parse_qsl parsing query string: Mean +- std dev: 2.86 us +- 0.03 us
.....................
parse_query_string parsing query string: Mean +- std dev: 916 ns +- 13 ns
.....................
stdlib parse_qsl parsing urlencoded query string: Mean +- std dev: 8.30 us +- 0.10 us
.....................
parse_query_string urlencoded query string: Mean +- std dev: 1.50 us +- 0.03 us
parse_url_encoded_dict
This function is used to parse a url-encoded form data dictionary and parse it into the python equivalent of JSON types.
from urllib.parse import urlencode
from fast_query_parsers import parse_url_encoded_dict
encoded = urlencode(
[
("value", "10"),
("value", "12"),
("veggies", '["tomato", "potato", "aubergine"]'),
("nested", '{"some_key": "some_value"}'),
("calories", "122.53"),
("healthy", "true"),
("polluting", "false"),
("json", "null"),
]
).encode()
result = parse_url_encoded_dict(encoded, parse_numbers=True)
# result == {
# "value": [10, 12],
# "veggies": ["tomato", "potato", "aubergine"],
# "nested": {"some_key": "some_value"},
# "calories": 122.53,
# "healthy": True,
# "polluting": False,
# "json": None,
# }
This function handles type conversions correctly - unlike the standard library function parse_qs
. Additionally, it
does not nest all values inside lists.
Note: the second argument passed to parse_url_encoded_dict
dictates whether numbers should be parsed. If True
,
the value will be parsed into an int or float as appropriate, otherwise it will be kept as a string.
By default the value of this arg is True
.
Url Encoded parsing is more than x2 times faster than the standard library, without accounting for parsing of values:
stdlib parse_qs parsing url-encoded values into dict: Mean +- std dev: 8.99 us +- 0.09 us
.....................
parse_url_encoded_dict parse url-encoded values into dict: Mean +- std dev: 3.77 us +- 0.08 us
To actually mimic the parsing done by parse_url_encoded_dict
we will need a utility along these lines:
from collections import defaultdict
from contextlib import suppress
from json import loads, JSONDecodeError
from typing import Any, DefaultDict, Dict, List
from urllib.parse import parse_qsl
def parse_url_encoded_form_data(encoded_data: bytes) -> Dict[str, Any]:
"""Parse an url encoded form data into dict of parsed values"""
decoded_dict: DefaultDict[str, List[Any]] = defaultdict(list)
for k, v in parse_qsl(encoded_data.decode(), keep_blank_values=True):
with suppress(JSONDecodeError):
v = loads(v) if isinstance(v, str) else v
decoded_dict[k].append(v)
return {k: v if len(v) > 1 else v[0] for k, v in decoded_dict.items()}
With the above, the benchmarks looks like so:
python parse_url_encoded_form_data parsing url-encoded values into dict: Mean +- std dev: 19.7 us +- 0.1 us
.....................
parse_url_encoded_dict parsing url-encoded values into dict: Mean +- std dev: 3.69 us +- 0.03 us
All contributions are of course welcome!
cargo install
to setup the rust dependencies and poetry install
to setup the python dependencies.pre-commit install
(requires pre-commit).Run poetry run maturin develop --release --strip
to install a release wheel (without debugging info). This wheel can be
used in tests and benchmarks.
There are basic benchmarks using pyperf in place. To run these execute poetry run python benchrmarks.py
.